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ABSTRACT

The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales affecting the
freshwater content (FWC) of the Arctic Ocean. A recent study (Manucharyan and Spall 2016) emphasized
the role of mesoscale eddies in setting equilibrium halocline properties. Here, we explore the role of eddies
in the Ekman-driven gyre variability. Following the Transformed Eulerian Mean framework, we develop a
theory that links the FWC variability to the stability of the large scale gyre, defined as the inverse of its equi-
libration time. We verify our theory’s agreement with eddy-resolving numerical simulations and demonstrate
that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. The model suggests that a
correct representation of the halocline dynamics requires the eddy diffusivity of 300±200 m2 s−1, which is
lower than what is used in most low-resolution climate models.

We demonstrate that on seasonal time scales, FWC variability is explicitly governed by the Ekman pumping,
whereas on interannual and longer time scales eddies provide an equally important contribution. In addition,
only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturba-
tions being an order of magnitude less efficient. Incorporating the eddy effects, we introduce a FWC tendency
diagnostic – the Gyre Index – that can be conveniently calculated using observations of surface stress and
halocline slope only along the gyre boundaries. We demonstrate its strong predictive capabilities in the eddy-
resolving model forced by stochastic winds and speculate that this index would be of use in interpreting FWC
evolution in observations as well as in numerical models.

1. Introduction

The observed increase of the Arctic freshwater content
over the past two decades has been related partially to
a deepening of the halocline and partially to water-mass
freshening (Rabe et al 2014). In particular, a significant
contribution to the overall Arctic freshening came from
the Beaufort Gyre; here the freshwater content (FWC) in-
creased by about 30% over the past decade (Haine et al
2015).

Observational evidence suggests that the halocline dy-
namics of the Beaufort Gyre are to a large extent governed
by the anticyclonic atmospheric winds that drive the large-
scale gyre circulation – and to a lesser extent due to the
availability of Arctic freshwater sources (Proshutinsky et

∗Corresponding author address: Georgy E Manucharyan, MC 131-
24, California Institute of Technology, 1200 East California Boulevard,
Pasadena, CA, 91125, USA.
E-mail: gmanuch@caltech.edu

al 2009). The surface stress results largely from the sea
ice drag and quantification of the oceanic response is sub-
ject to our uncertainties in the sea ice-ocean momentum
exchange (Martin et al 2014; Giles et al 2012).

Modeling and observational studies demonstrate a di-
rect relation between the freshwater content and the Ek-
man pumping (Proshutinsky et al 2002, 2009; Stewart and
Haine 2013; Timmermans et al. 2011, 2014). Thus, Stew-
art and Haine (2013) show that a reduction in the strength
of anticyclonic winds can lead to a redistribution of FWC
within the Arctic Ocean and to changes in the exchange
between North Atlantic and Pacific Oceans. The basic
gyre dynamics are conventionally described in the follow-
ing way: the surface Ekman transport converges surface
fresh waters and deepens the halocline, thus storing fresh-
water in the gyre (e.g. Proshutinsky et al 2009). This argu-
ment, however, does not explain how a steady state can be
achieved as it does not specify a mechanism opposing the
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continuous halocline deepening due to the Ekman pump-
ing.

The importance of the opposing mechanism can be
clearly illustrated from the point of view of the large-scale
gyre stability in its integral sense. By stability, we imply
that there exists a statistical equilibrium state of the gyre
(averaged over small scale features, e.g. internal waves
and eddies) and that any deviations from this equilibrium
would decay on a finite time scale. Since the gyre is a
persistent large-scale feature of the Arctic Ocean, it is rea-
sonable to assume that it is a stable, externally-driven sys-
tem. Using basic concepts of dynamical systems theory
(e.g. Tabor 1989), the linear stability assumption implies
that near its equilibrium, perturbations of the gyre state, a,
obey a basic equation of forced exponential decay

da
dt

=− a
T

+w. (1)

We will formally derive Eq. 1 in this manuscript (see Sec-
tion 6), providing physical interpretation for its variables,
but at this point one can conceptually think of a and w as
measures of the bulk halocline deepening (or FWC) and
Ekman pumping correspondingly. The gyre stability is
defined as the inverse of its equilibration time scale, T ,
and here we assume that the large-scale gyre circulation
is always stable (i.e. T > 0). The damping term (−a/T )
represents a linearization of a process opposing the Ekman
pumping near its equilibrium.

Here it is important to distinguish the concepts of large-
scale gyre stability in terms of a statistically-averaged
equilibrium and this state’s hydrodynamic stability char-
acteristics. By gyre stability we refer to the equilibra-
tion (exponential decay) of large-scale anomalies of a
statistically-averaged circulation that does not contain in-
formation about individual small-scale eddies. In contrast,
baroclinic instabilities lead to the exponential growth of
individual small-scale perturbations. Thus, the gyre can be
stable in a statistically-averaged sense and at the same time
hydrodynamically unstable at small scales. Our proposed
hypothesis implies that the stability of the large-scale gyre
depends on the cumulative action of small-scale eddies,
individually generated through baroclinic instabilities.

Based on a basic dimensional analysis, the halocline
deepening (units of meters) should depend not only on Ek-
man pumping (units of meters per second) but also on the
adjustment time scale (units of seconds). For example,
according to (1), a = wT for a system in steady state or
subject to a slowly-evolving forcing. Moreover, the ampli-
tude of the gyre variability in response to time-dependent
Ekman pumping would also be directly proportional to T
(i.e. reduced stability would imply a larger variance for the
same forcing). Since the gyre stability is directly related
to the nature of the processes that counteract the Ekman
pumping, it is essential to determine what these processes
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FIG. 1. Schematic view of the Beaufort Gyre circulation depicting
a balance between Ekman pumping and eddy induced vertical velocity.
The Ekman vertical velocity penetrates through the entire water column.
Surface convergence of the Ekman transport is balanced by the corre-
sponding bottom divergence with the mean circulation being closed via
coastal upwelling.

are, how they depend on external forcing, and how they
affect the gyre variability.

While much of the scientific effort has been devoted
to the exploration of the impact of Ekman pumping (e.g.
Proshutinsky et al 2002; Yang 2009; McPhee 2012; Tim-
mermans et al. 2014; Cole et al 2014), factors controlling
the gyre stability are poorly understood. A recently pro-
posed hypothesis points to mesoscale eddy transport be-
ing a sufficient mechanism to oppose the Ekman pump-
ing (Davis et al 2014; Marshall 2015; Lique et al 2015;
Manucharyan and Spall 2016; Yang et al 2016). The
eddies are generated via baroclinic instabilities of the
large-scale gyre circulation that release available poten-
tial energy associated with the halocline deepening. The
eddy buoyancy fluxes (or layer thickness fluxes) through-
out this process act to adiabatically flatten the halocline,
thus opposing the deepening due to the Ekman pumping
(schematically shown in Fig. 1).

The mesoscale eddies discussed here are associated
with baroclinic instabilities of a large scale halocline slope
and hence predominantly carry the energy of the first baro-
clinic mode. The majority of the observational analysis in
the Arctic Ocean, however, has been devoted to intense lo-
calized vortices (Manley and Hunkins 1985; Timmermans
et al. 2008; Dmitrenko et al. 2008; Watanabe 2011; Zhao
et al 2014) that can form at boundary currents (Watanabe
2013; Spall et al. 2008; Spall 2013) and at surface ocean
fronts (Manucharyan and Timmermans 2013). Although
observational analysis for the role of halocline-origin ed-
dies in the interior salinity budget is currently lacking, this
is likely due to a lack of data sufficient to calculate energy
conversion rates and eddy salt fluxes in the basin interior.

Taking into account the eddy transport mechanism,
Davis et al (2014) have used a low-resolution shallow wa-
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ter model (with eddies parameterized as horizontal dif-
fusion) to explore seasonal gyre dynamics. Yang et al
(2016) explored the potential vorticity budget of the gyre
and reached the conclusion that the eddies are necessary
to close it. Previous studies have suggested that there are
links between the dynamics governing the Antarctic Cir-
cumpolar Current (ACC) (Marshall and Radko 2003) and
gyres with azimuthally-symmetric circulations: Su et al.
(2014) in the Weddell Gyre, Marshall et al (2002) in labo-
ratory experiments, and Marshall (2015) in the Beaufort
Gyre. The stratification in these regions is determined
from a leading order balance between mesoscale eddy
transport and Ekman pumping.

A recent study by Manucharyan and Spall (2016) (from
now on MS16) demonstrated that the instabilities associ-
ated with the observed halocline slope are indeed generat-
ing sufficient mesoscale activity to cumulatively counter-
act the Ekman pumping. They also developed a set of an-
alytical scaling laws that predict the gyre adjustment time
scale, halocline depth, and maximum freshwater flux out
of the gyre and explicitly relate these key gyre character-
istics to the mesoscale eddy dynamics.

In light of this newly developed understanding it is im-
perative to explore the role of mesoscale eddies in deter-
mining the stability of the gyre and its transient dynamics.
Here, we present a basic theory of the wind-driven Beau-
fort Gyre variability. The manuscript is organized in the
following way. In Section 2 we briefly review the trans-
formed Eulerian mean framework that is used through-
out our analysis. In Section 3 we describe an idealized
Beaufort Gyre model that we use for our process stud-
ies. In Section 4 we diagnose a key eddy field charac-
teristic, the eddy diffusivity, and assess its sensitivity to
forcing. In Section 5 we demonstrate how mesoscale ed-
dies affect the gyre stability and equilibration. In Section
6 we quantify the FWC response to periodic and spatially-
inhomogeneous Ekman pumping. In Section 7 we intro-
duce a new Gyre Index that includes the effects of both Ek-
man pumping and mesoscale eddies in order to rationalize
FWC variability. We summarize and discuss implications
in Section 8.

2. Theoretical background

We briefly describe the mathematical formulation of the
Transformed Eulerian Mean framework (TEM) (Andrews
and McIntyre 1976; Vallis 2006; Marshall and Radko
2003) that is used in our analysis. Within this framework
the eddy buoyancy fluxes can be represented via an ad-
ditional eddy-induced stream function. This allows one
to view the ensemble mean buoyancy as being advected
by the residual between the Eulerian mean and the eddy-
driven circulations.

a. TEM framework

The Reynolds averaged buoyancy equation is written in
cylindrical coordinates as:

b̄t + v̄b̄r + w̄b̄z +(v′b′r)+(w′b′z) = S̄, (2)

where b denotes the buoyancy, (v̄, w̄) are the Eulerian
mean radial and vertical velocities in the (r,z) coordinates,
and S represents buoyancy sources and sinks. The bar here
represents an average either in the azimuthal direction or
in an ensemble mean sense; we only consider axisymmet-
ric solutions here. Next, the eddy buoyancy fluxes are as-
sumed to be predominantly aligned with isopycnals in the
interior of the ocean – the so called adiabatic limit (Vallis
2006). In this limit the flux divergences can be represented
as an additional advection of mean gradients by the eddy
stream function such that:

b̄t +(v̄+ v∗)b̄r +(w̄+w∗)b̄z = S̄, (3)

where the eddy advection velocities can be defined from
an eddy stream function ψ∗ as:

ψ
∗ =−w′b′

b̄r
=

v′b′

b̄z
, (4)

u∗ =−ψ
∗
z , w∗ =

1
r
(rψ

∗)r. (5)

The adiabatic assumption breaks down near boundary lay-
ers that have significant diabatic fluxes due to buoyancy
forcing and/or enhanced mixing. Near such boundaries
the processes obey different dynamics that we do not at-
tempt to represent here.

Thus, the ensemble mean buoyancy is advected by a
residual circulation, ψ̃ ≡ ψ̄ + ψ∗, that exists in order to
balance the buoyancy sources and sinks. This formalism
clarifies that in the interior of the ocean, where the diabatic
fluxes are small, a steady state implies that the residual
circulation has to vanish, i.e. ψ̃ = 0.

At this point, in order to make analytical progress in un-
derstanding the buoyancy variability, it is necessary to in-
troduce a closure for the eddy-driven stream function and
to determine the Eulerian mean stream function.

b. Eulerian mean stream function

The azimuthally-averaged azimuthal momentum equa-
tion can be simplified for the gyre dynamics. First, we
assume that contributions from the Reynolds stresses are
negligible for large-scale flows. Second, the inertial term
can also be neglected for time scales sufficiently larger
than f−1. In addition, the azimuthal pressure gradient term
vanishes as a result azimuthal averaging. Taking this into
account, a simplified form of the momentum equation rep-
resents the steady Ekman dynamics:

f v̄ =−τ̄z/ρ0, (6)
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where τ is the azimuthal stress and ρ0=1023 kg m−3 is the
reference ocean density. In the ocean interior the vertical
shear in stress is negligible, allowing one to obtain an ex-
pression for the Eulerian stream function by vertically in-
tegrating the momentum equation from the surface to any
depth below the surface Ekman layer:

ψ̄ =
τ

ρ0 f
, (7)

v̄ =−ψ̄z, w̄ =
1
r
(rψ̄)r, (8)

From now on τ = τ(r, t) denotes the radially- and time-
dependent azimuthal surface stress – an external forcing
for the gyre. Thus, the large-scale Eulerian mean flow is
entirely determined by the surface stress distribution and
does not depend on the buoyancy field or the mesoscale
eddy activity. Note that this relation can be significantly
affected by the presence of topography.

c. Mesoscale eddy parameterization

Mesoscale eddies emerge due to an instability of the
baroclinic flow and their amplitude is related to the sta-
bility characteristics of the flow. Here, we implement
a Gent-McWilliams type mesoscale eddy parameteriza-
tion (Gent and McWilliams 1990) that assumes a down-
gradient nature for the eddy buoyancy fluxes (or layer
thickness fluxes):

v′b′ =−Kbr. (9)

The eddy diffusivity K = K(s) can in general depend on
the magnitude of the isopycnal slope s = |b̄r/b̄z|, thus
varying in space and time. Past studies suggested power-
law dependencies (K∼ sn−1). Powers n = 1 or n = 2 (Gent
and McWilliams 1990; Visbeck et al. 1997) are commonly
used in low-resolution ocean models while MS16 suggest
that n = 3 might be more appropriate for the Beaufort
Gyre. Since observations are not sufficient to differentiate
between these parameterizations, we continue the analysis
assuming a general power-law dependence:

ψ
∗ = Ks̄ = ks̄n, (10)

where now k (having units of m2 s−1) is a constant that we
will refer to as eddy efficiency to distinguish it from time-
and space-dependent eddy diffusivity K.

d. Steady state

In the absence of surface buoyancy forcing or strong
vertical mixing the steady state residual ocean circulation
has to vanish (Marshall and Radko 2003; Su et al. 2014)
implying that

ψ̃ =
τ

ρ0 f
+ k
(
−br

bz

)n

= 0. (11)

Surface stress at a particular location sets only the halo-
cline slope, not its depth. The halocline slope defines the
baroclinically-unstable azimuthal currents (via the thermal
wind relation) that generate eddies to locally oppose the
Ekman pumping.

Note that the Beaufort Gyre surface stress is on average
anticyclonic (τ < 0) and hence the halocline is deeper in
the interior, the isopycnal slope br/bz < 0, and ψ∗ > 0.
Given a surface stress profile, the halocline deepening
across the gyre can be determined by integrating (11):

∆h =
∫ R

0

[
−τ(r)
ρ0 f k

] 1
n

dr. (12)

Eq. 12 is identical to the expression for the ACC depth in a
theory developed by Marshall and Radko (2003). Assum-
ing the power n = 2, and considering a special case of uni-
form Ekman pumping (corresponding to τ(r) = −τ̂r/R)
the halocline deepens by

∆h =
2
3

R
(

τ̂

ρ0 f k

) 1
2
. (13)

3. Idealized Beaufort Gyre model

We implement an idealized model of the Beaufort Gyre
as was developed in MS16. It consists of a cylindrical
ocean basin (diameter 1200 km, depth 800 m) driven by
an anticyclonic surface-stress τ(r). The primitive equa-
tions are solved using the MIT General Circulation Model
(Marshall, Hill et al 1997; Marshall, Adcroft et al 1997;
Adcroft et al. 2015) in its three-dimensional, hydrostatic
configuration, with a 4 km horizontal resolution that is
sufficient to permit Rossby deformation scale eddies. The
deformation radius is about 20 km in our simulations (see
more details in Appendix A of MS16). For simplicity, the
present configuration uses a flat bottom basin; MS16 in-
cluded a continental slope.

Here we focus on how surface stress and mesoscale ed-
dies influence the isopycnal distribution in the Beaufort
Gyre and hence the surface buoyancy forcing is neglected.
Within our idealized gyre model we prescribe a fixed-
buoyancy boundary condition at the coastal boundaries
(via fast restoring to a given profile) and no-flux condi-
tions at the surface and bottom. The boundary conditions
aim to represent the unresolved dynamics that occur over
the shallow shelves as well as the water-mass exchanges
with other basins. We note, however, that these coastal dy-
namics can in general depend on the surface stress, which
causes upwelling and boundary mixing (Woodgate et al
2005; Pickart et at 2013).

The implemented fixed-buoyancy boundary conditions
imply that there exists an infinite reservoir of surface fresh
water and bottom salty waters that the gyre is allowed
to draw upon. The infinite water-mass reservoir repre-
sents dynamics only on sufficiently long time scales that
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FIG. 2. Time series of the gyre integrated eddy kinetic energy and
a corresponding residual circulation. The residual circulation was cal-
culated using diagnosed thickness fluxes in buoyancy coordinates (see
Appendix B in MS16) and averaged radially between 450km and 550km
over the halocline layer bounded by salinities 30 and 32.5. Note that the
amplitude of ψ̃ significantly reduces as the gyre spins up.

allow for the continental shelf water masses to be replen-
ished. Our idealized study does not include the processes
of water-mass formation and exchange at the boundaries,
instead focusing on the long-term wind-driven halocline
dynamics in the interior of the gyre. Nevertheless, once
the understanding of internal gyre dynamics is gained, the
use of simplifying boundary conditions in the numerical
model (and in analytical analysis) can be relaxed to in-
clude more realistic boundary processes.

Spin-up simulations were initialized with a
horizontally-uniform stratification (50 m initial halo-
cline depth) forced by a uniform constant in time
Ekman pumping (corresponding to a linear surface
stress profile τ0 = −τ̂r/R). The mean state simulations
were spun up for at least 50 years to ensure equilib-
rium. The following wind stress amplitudes were used
τ̂ = {0.005; 0.01; 0.015; 0.03; 0.05; 0.075}N m−2; we
consider τ̂ = 0.015N m−2 as a reference run represen-
tative of the present-day Beaufort Gyre. Perturbation
experiments that are described in the following sections
use spatially-inhomogeneous and time-dependent Ekman
pumping.

Following the growth of mesoscale eddies, this ideal-
ized Beaufort Gyre model achieves a statistically-steady
state that coincides with a vanishing residual circulation
(Fig. 2). Thus, mesoscale eddies provide a mechanism
to arrest the deepening of the halocline. We argue below
that eddies are also key to the temporal response of the
halocline to surface stress perturbations.

4. Mesoscale eddy diffusivity

The theoretical predictions of the gyre state rely on the
relevance of the mesoscale eddy parameterization which
uses an a priori unknown parameter k that is directly re-
lated to the mean state eddy diffusivity K0. To ensure con-
sistency, we diagnose the eddy diffusivity using several
different methods based on our theoretical predictions.

We start with a direct estimate of diffusivity using the
eddy buoyancy fluxes (see Eq. 9) of the equilibrated gyre
simulation for a reference run:

K∗0 (r,z) =−v′b′

b̄r
, (14)

where the overline represents both temporal and azimuthal
averaging and primes are the deviations from this mean.
The eddy diffusivity for a reference Beaufort Gyre sim-
ulation that has a relatively weak forcing (τ0 ∼ 0.015 N
m−2) ranges between 100− 500 m2 s−1 (Fig. 3a). With
the exception of the near coastal boundary layer, the dif-
fusivity increases towards the gyre edges where the halo-
cline slope (and hence the baroclinicity of the currents) is
higher, which is consistent with our eddy parameterization
(Eq. 10). The halocline appears rather thick in the figure
because of the spatial and temporal averaging of the thick-
ness variations represented by the mesoscale eddies. The
halocline is typically 50 m thick locally in space and time.

Using analytical predictions (Eqn. 13) we can also in-
fer the mesoscale eddy diffusivity necessary to support the
simulated halocline deepening as:

K∆h
0 (τ̂) =

2
3

τ̂

ρ0 f
R

∆h(τ̂)
, (15)

where we assumed an eddy parameterization power n = 2
(i.e. K = ks) as in Visbeck et al. (1997) and a charac-
teristic slope was taken near the edge of the gyre s =
[τ̂/(ρ0 f k)]1/n = 1.5∆h/R. Both (14) and (15) produce
similar eddy diffusivity estimates (Fig. 3b); they also show
a similar sensitivity to surface stress forcing. These in-
ferred eddy diffusivities should be thought of as bulk val-
ues representative of the gyre as a whole; the instantaneous
values can differ depending on location and time. Note
that because s ∼ ∆h/R ∼ τ1/2, the definition of K in Eq.
15 is consistent with our assumed parameterization K ∼ s.

According to Visbeck et al. (1997) the coefficient k =
cNl2 where c = 0.015 is an empirical constant, N is the
stratification parameter (N≈ 130 f in our simulations), and
l is the width of the baroclinic zone. Taking estimates for
the diffusivity K = 300 m2 s−1 and the slope s = 10−4,
we find k = 3× 106 m2 s−1, which implies that l ≈ 150
km, using hte same value for the empirical constant c as in
Visbeck et al. (1997). Note that the estimated size of the
baroclinic zone l is less than the gyre radius. This is qual-
itatively consistent with the numerical experiments show-
ing intense eddy generation near the edges of the gyre and
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not near its center where the halocline slope is negligibly
small.

The eddy diffusivity K increases with the surface stress
following a nearly linear relationship (Fig. 3b) with the
rate of increase of about 170 m2 s−1 per 0.01 N m−2 in-
crease in τ̂ . This linear increase implies that the eddy sat-
uration regime would be reached for strong forcing, i.e.
for a sufficiently strong surface stress the halocline slope
would approach a critical value because Ks = τ/(ρ0 f ) and
K ∼ τ . A corresponding halocline deepening is saturated
at about ∆h ≈ 150 m. The eddy saturation phenomenon
has been extensively discussed in the ACC, where the
baroclinic transport is only weakly sensitive to changes in
the strength of the surface westerlies (e.g. Hallberg and
Gnanadesikan 2001; Meredith et al 2004; Munday et al
2013). In contrast, because of the relatively weak forcing
the Beaufort Gyre is far from the eddy saturation limit and
is highly sensitive to the surface stress (MS16). Thus, sig-
nificant gyre variability should be expected in response to
transient forcing.

5. Transient TEM equations

Now that we have developed a basic understanding of
the mesoscale eddy response to forcing and confirmed the
appropriateness of the eddy parameterization, we proceed
to explore the implications for the transient gyre dynam-
ics. Combining the expressions for the Eulerian and the
parameterized eddy stream functions, the evolution equa-
tion for buoyancy is:

bt +
1
r
(ψ̃r)rbz + ψ̃zbr = S̄, (16)

ψ̃ =
τ

ρ0 f
+ k
(
−br

bz

)n

. (17)

This nonlinear equation is relevant to the interior of the
gyre and is subject to the appropriate boundary and initial
conditions:

b|r=R = b0(z), br|r=0 = 0, (18)
bz|z=0,H = 0, b|t=0 = b0. (19)

a. Scaling analysis

It is insightful to consider a scaling analysis for the gyre
dynamics. On one hand, the system approaches equilib-
rium on an eddy-diffusion time scale defined as T ∼R2/K,
where eddy diffusivity K ∼ k(h/R)n−1 depends on the
unknown halocline depth. Diffusive scaling implies that
a deeper halocline would have a larger eddy diffusivity
and would thus equilibrate faster. On the other hand, the
isopycnal depth h together with the Ekman pumping ve-
locity define a vertical advection time scale T ∼ h/we,
where we ∼ τ̂/(ρ0 f R) is the Ekman pumping. Since the
dominant balance is achieved between the vertical Ekman
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FIG. 3. a) Spatial distribution of the equilibrium eddy diffusivity
K∗0 =−v′b′/b̄r (14) as diagnosed from the eddy-resolving model for the
reference run (τ = 0.015 N m−2). Contours show equally spaced mean
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dence of various definitions of the eddy diffusivity K on the magnitude
of the surface-stress. KT

0 (black circles, Eqn. 29) and K∆h
0 (red dia-

monds, Eqn. 15) are inferred from the diagnosed gyre adjustment time
and the mean halocline depth, respectively; K∗0 (blue triangles, Eqn. 14)
are diagnosed from the model (averaged between 400 km and 450 km
within the halocline layer). A linear fit to all the data points corresponds
to K = 2420[τ̂/(ρ0 f )]+230 m2s−1 (black dashed line).

pumping of freshwater and its horizontal diffusion due to
eddy transport the two mechanisms have to operate on a
similar time scale. Following MS16, the two time scales
can be equated to obtain a scaling for the halocline depth



J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y 7

Surface stress (N=m2)
0 0.02 0.04 0.06 0.08

A
dj

us
tm

en
t t

im
e 

sc
al

e 
(y

ea
rs

)

0

2

4

6

H
al

oc
lin

e 
de

ep
en

in
g 

(m
)

0

50

100

150

FIG. 4. Equilibrium halocline deepening across the gyre (red y-axis)
and its e-folding adjustment time scale diagnosed from the spin up sim-
ulations (black y-axis) plotted as functions of the mean surface stress
forcing (linear surface stress profile was used τ(r) =−τ̂r/R). Theoret-
ical scaling predictions are shown in solid lines for the power n = 3 and
in dashed lines for n = 2 (see Eqns. 20-21). Each symbol is diagnosed
from a numerical model run with different surface stress.

and the adjustment time scale:

∆h∼ R
(

τ̂

ρ0 f k

) 1
n

, (20)

T ∼ R2

k

(
τ̂

ρ0 f k

) 1−n
n

. (21)

The expressions above imply that stronger pumping would
lead to deeper halocline with faster adjustment time scale
(a more stable gyre). In addition, both scaling laws ex-
plicitly depend on the eddy efficiency: for smaller k the
halocline would be deeper and the adjustment time scale
longer (a less stable gyre). MS16 show that these scaling
laws hold for a wide range of surface stress forcing and we
confirm (20) and (21) for the case of no topography under
consideration here (Fig. 4).

Depending on the choice of the power n there can be
major qualitative differences in the gyre sensitivity to forc-
ing. Thus, n = 1, equivalent to a constant eddy diffusivity,
results in an equilibration time scale that is independent
of the surface forcing and a halocline depth that scales lin-
early with the surface stress (implying there is no eddy sat-
uration). This provides a poor representation of the simu-
lated gyre dynamics. Differences between n = 2 and n = 3
would manifest only for a sufficiently wide range of forc-
ing magnitudes. For the range of forcing relevant to the
Arctic Ocean (τ . 0.1 N m−2) n = 2 and n = 3 produce
similar results (Fig. 4). Note, that the power n is not a
priori constrained to be an integer.

6. Gyre equilibration and stability

In this section we derive analytical time-dependent so-
lutions for the halocline depth.

a. Linear dynamics near equilibrium

We assume that for a given mean surface stress τ0(r)
there exists a steady state corresponding to a long-term
time average (i.e. over time scales much longer than the
gyre spin-up time). We then assume that Ekman pumping
perturbations lead to sufficiently small buoyancy perturba-
tions for which a linearization of the full nonlinear equa-
tion set (Eq. 16) is appropriate. In other words we ex-
plore the transient gyre dynamics where isopycnal depth
perturbations can be considered small compared to their
time-averaged state.

The linearized equations for the evolution of halocline
depth anomalies h (see derivation in Appendix A) result in
a diffusion equation forced by Ekman pumping:

ht =
1
r

(
nK0rhr

)
r︸ ︷︷ ︸

Eddy diffusion

+
1
r

(
r
−τ

ρ0 f

)
r︸ ︷︷ ︸

Ekman pumping

. (22)

Here τ is the surface stress perturbation from its mean
value τ0, and K0(r) is a background eddy diffusivity set
by the mean isopycnal slope as

K0 = ksn−1
0 = k

[
−τ0(r)
ρ0 f k

] n−1
n

. (23)

The first term on the right hand side of Eq. 22 acts to
diffuse the isopycnal depth perturbations with a space-
dependent diffusivity equal to nK0; the prefactor n ap-
pears for a linear problem because of the a power-law de-
pendence of eddy diffusivity on the slope (see Appendix
A). This representation of mesoscale eddies as thickness
diffusivity is analogous to the expression in Gent and
McWilliams (1990); Su et al. (2014, e.g.). The second
term is the perturbation in Ekman pumping we that acts
as a forcing for the isopycnal depth:

we = curl
(
−τ

ρ0 f

)
=

1
r

(
r
−τ

ρ0 f

)
r
. (24)

Thus, consistent with the mean state dynamics, it is an im-
balance between the eddy diffusion and Ekman pumping
that drives the halocline depth perturbations.

b. Gyre adjustment time scale

One of the most important quantities that describes the
gyre dynamics is its stability, i.e. the adjustment time scale
associated with the exponential decay of perturbations. In
this section we explore the impact of eddies on this adjust-
ment.
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Given any radial profile of the anticyclonic mean sur-
face stress [τ0(r)] one can calculate the background diffu-
sivity K0(r) (from Eq. 23) and the eigenfunctions h∗i with
corresponding eigenvalues T−1

i > 0 for the eddy diffusion
operator:

1
r

[
rK0(r)h∗ir

]
r
=−h∗i

Ti
. (25)

Here, homogeneous boundary conditions h(R) = 0 and
hr(0) = 0 should be used (see Appendix A). Since this
diffusion operator is self-adjoint (for an r-weighted norm
and K0(r) > 0) any halocline depth perturbation can be
decomposed into contributions from its orthogonal eigen-
modes (h(r)∗i ) as

h =
∞

∑
i=1

ai(t)h∗i , (26)

where we sort the eigenfunctions corresponding to their
eigenvalues starting from the smallest (their indices cor-
respond to the number of zero crossings). Thus, the first
eigenfunction corresponds to a large-scale halocline deep-
ening, whereas higher eigenmodes are more oscillatory
in space and correspond to higher eigenvalues, discussed
more below.

In an unforced case (i.e. Ekman pumping perturbations
we = 0), the amplitudes ai(t) would evolve independently
from each other according to a simple exponential decay
law:

dai

dt
=−ai

Ti
. (27)

This result confirms our a priori assumption about the
gyre being a stable system (see Eq. 1 and related discus-
sions). Eigenvalues represent the inverse of the decay time
scales Ti for each eigenmode. For a general perturbation
that may consist of many different modes, the gyre would
equilibrate on a time scale corresponding to the longest
one amongst all the possible modes:

T0 =
1

nλ

R2

K0(R)
. (28)

Here λ is a positive dimensionless constant that arises
as a solution of the discussed eigenvalue problem. Note
that the eigenvalues depend on boundary conditions, how-
ever for diffusion operators they grow rapidly (roughly
quadratically) with the number of zero crossings of the
corresponding eigenfunction. This implies that the spin-
up time scale observed in the numerical model corre-
sponds to a decay of the large-scale gyre mode, whereas
small-scale spatial perturbations in the halocline depth
would decay much faster.

For a linear surface-stress profile used in our reference
gyre simulation (τ0 ∼ r) we obtain λ = {5.7,4.7,4.3} for
powers n = {1,2,3} respectively. While the expression
for the gyre adjustment time (Eq. 28) is consistent with
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FIG. 5. Freshwater volume and freshwater content plotted against
each for the spinup time series of different numerical model experi-
ments. Dashed line shows a slope of ∆S/Sre f supporting Eq. 31.

the scaling laws (Eq. 21), here we determined the multi-
plicative prefactor (nλ )−1 ≈ 0.1 which turns out to be an
order of magnitude smaller than 1.

Using the gyre adjustment time scale diagnosed from
the spinup time series (Fig. 4 black circles) we can infer
an appropriate eddy diffusivity that can generate such a
time scale as

KT
0 (τ̂) =

1
λn

R2

T0(τ̂)
, (29)

where n = 2 and a corresponding λ = 4.7 are used (see
Eq. 28). Using the diagnosed equilibration time scale T0
(Fig. 4) we calculate the corresponding eddy diffusivity
based on Eq. (29) above and plot in Fig. 3b (black circles).
This diffusivity estimate is consistent with the one inferred
from the bulk halocline deepening (Eq. 15) as well as with
the one directly diagnosed from the eddy buoyancy fluxes
(Eq. 14). A good agreement between the three indepen-
dent methods (Fig. 3b) provides strong support for the
validity of our theory that draws direct connections be-
tween eddy diffusivity, halocline depth, and gyre stability
or equilibration time scale.

7. FWC response to Ekman pumping

Defined as a linear measure of column salinity with re-
spect to a reference salinity Sre f , the amount of freshwater
(FW) can be approximated as

FW ≡
∫ 0

−H
−

S(z)−Sre f

Sre f
dz≈ ∆S

Sre f
h, (30)

where the integration is to a depth H of a reference isoha-
line. The FW is proportional to the halocline depth h and
to the bulk vertical salinity difference ∆S and thus can be
altered either via water-mass modification or via changes
in halocline depth. Note that the presence of vertical mix-
ing can not significantly affect FWC unless it diffuses salt
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up from below the reference salinity. Mixing can become
important in cases with weak forcing when the halocline
becomes thin (Spall 2013).

Using the approximation (30) it can be deduced that the
FWC, defined as an area-integrated amount of freshwater,
is proportional to the volume V of water above the halo-
cline:

FWC ≈ ∆S
Sre f

V, where V = 2π

∫ R

0
rhdr. (31)

Building on the linear relationship between FWC and V ,
verified in the numerical model (see Fig. 5), we continue
our exploration of the forced freshwater volume dynam-
ics. In diagnosing V from the numerical model we de-
fined the halocline depth h via the location of the 32.25
isohaline; the relative top-to-bottom salinity difference,
∆S/Sre f ≈ 5/34 is essentially prescribed through bound-
ary conditions. In general, the temporal evolution of FWC
would also depend on water mass modifications that affect
surface and mid-depth salinities.

a. Spatially inhomogeneous Ekman pumping

Here we address the following question: amongst all
the possible Ekman pumping distributions, which one is
most efficient in changing the FWC? We thus consider the
evolution of halocline volume, V , under spatially inhomo-
geneous Ekman pumping.

Projecting Eq. 22 onto the ith eigenmode we obtain that
each amplitude ai(t) is forced by the Ekman pumping pro-
jection wi onto a corresponding eigenfunction h∗i (plotted
in Fig. 6a) such that

dai

dt
h∗i =−ai

Ti
h∗i +wi. (32)

An area integral of (Eq. 32) results in an evolution equa-
tion for the corresponding halocline volume Vi:

dVi

dt
=−Vi

Ti
+WE , (33)

where WE is the area integrated Ekman pumping, i.e. the
Ekman transport. The equation above demonstrates the
stability of the gyre in terms of the decay of its halocline
volume anomalies which supports our a priori stability as-
sumption (see Eq. 1 and discussions thereof).

Since we are considering Ekman pumping perturbations
that have the same Ekman transport, a steady state volume
anomaly is directly proportional to the corresponding time
scale Vi = WETi (Eq. 33). In turn, the time scales Ti reduce
rapidly in magnitude with their index

Ti

T0
<< 1 for i≥ 1. (34)

For example, for the eigenfunctions plotted in Fig. 6
T1/T0 = 0.23, T2/T0 = 0.1, implying that V0 is at least an
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FIG. 6. a) First three halocline depth eigenfunctions; the legend
shows their corresponding nondimensional eigenvalues which grow
rapidly with the number of zero crossings. b) Response of freshwa-
ter content to the mentioned surface stress profiles as simulated by the
eddy resolving numerical model (blue, black, and red correspondingly).
Note that all stress perturbation had the same magnitude of area aver-
aged Ekman pumping. Perturbations were made on a control run.

order of magnitude larger. Thus, the most dominant con-
tribution to freshwater content would be due to the Ekman
pumping pattern of the gravest eigenmode (i.e. gyre scale
anticyclonic surface stress pattern as shown in Fig. 6a,
red). Eddy diffusion is efficient in damping the response
to spatially inhomogeneous Ekman pumping. This occurs
because highly oscillatory eigenmodes induce large halo-
cline slopes (see Fig. 6a) which quickly produce strong
mesoscale transport that acts to damp them.

We now test this theoretical prediction within the eddy
resolving gyre model. We have perturbed the gyre from its
equilibrium state by increasing the Ekman pumping with
patterns corresponding to the first three eigenmodes (ra-
dial distributions as in Fig. 6a). Ekman transport pertur-
bation amplitudes are 25% compared to the equilibrated
state transport. Note that all three perturbations have the
same value of the area averaged Ekman pumping and yet
the theory predicts that the corresponding FWC responses
should be dramatically different.
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The numerical model, in agreement with the theory,
shows that the FWC increases substantially more for the
large-scale Ekman pumping pattern (Fig. 6b, red) and vir-
tually does not increase for the spatially inhomogeneous
pumping (Fig. 6b, blue and black). This confirms that
only large-scale Ekman pumping can efficiently contribute
to changes in FWC.

By moving beyond the steady state solutions consid-
ered earlier, the transient dynamics reveal which Ekman
pumping modes provide the most efficient forcing. Non-
linearity (not accounted for in our transient theory) might
be important in determining the halocline depth anoma-
lies that are large in amplitude, especially near the center
of the domain (Fig. 6a). However, changes near the cen-
ter of the domain do not substantially contribute to FWC
as it is weighted by area, meaning that changes are more
important at the edges.

b. Periodic Ekman pumping

Here we explore the response of FWC to periodic Ek-
man pumping. Modes with smaller-scale spatial variabil-
ity are damped more efficiently by eddies (Eq.33), such
that the overall halocline volume anomaly is largely deter-
mined by the volume of the first eigenmode:

V =
∞

∑
i=0

Vi ≈V0. (35)

The volume anomalies thus obey a simple equation of a
damped-driven system that approaches equilibrium with
an e-folding time scale T0:

dV
dt

=−V
T0

+WE sinωt, (36)

A similar equation and role of eddies was found for tran-
sient dynamics of the thermohaline circulation by Spall
(2015). Note that here we consider the gyre forced by
the most efficient large-scale Ekman pumping pattern (i.e.
we = w0h∗0). In general, WE would be the transport asso-
ciated only with the Ekman pumping projection onto the
first eigenfunction w0 as the portions of the transport asso-
ciated with larger eigenvalue projections would insignifi-
cantly contribute to changes in volume.

Solving the equation above we find that the halocline
volume, after an initial adjustment, approaches a simple
periodic solution lagged with respect to the forcing by a
phase φ :

V
WET0

=
1√

1+(ωT0)2
sin(ωt−φ), (37)

φ = arctan(ωT0). (38)

Using the equilibrated control simulation we apply os-
cillating Ekman pumping forcing with a 25% amplitude

with respect to its mean value (the large-scale spatial pat-
tern does not change in time). The normalized freshwater
volume amplitude and its phase lag are diagnosed from
the model and are shown in Fig 7 (crosses). The eddy re-
solving model is in close agreement with our theoretical
predictions based on the adjustment by mesoscale eddy
diffusion.

The time scale T0 represents a transition in the sys-
tem from a one-dimensional to a three dimensional re-
sponse. If the eddies were unimportant to the dynam-
ics (a limit of infinitely large adjustment time scale T0
in Eqns. 37-38), the volume perturbations would have
been inversely proportional to the frequency of the Ekman
pumping (V = WE/ω) and the phase lag would have been
a quarter of a period for all frequencies (φ = π/2). This
limit is relevant for high-frequency forcing, where the ed-
dies have insufficient time to respond to changes in Ek-
man pumping; the gyre response in this case is entirely
due to the Ekman advection. However, the freshwater vol-
ume amplitude is maximized for slowly oscillating forcing
where it is more in phase with the forcing (Fig 7). In this
regime the eddy transport nearly compensates for the Ek-
man pumping. The response amplitude diagnosed from
the numerical model is slightly larger than the analytical
prediction (Fig. 7a) due to a presence of internal modes of
the gyre variability excited by the forcing.

The time scale T0≈ 2.1 years that was used in the theory
(Eqns. 38-37) was estimated from bulk gyre sensitivity to
forcing as

T0 =
∆V

∆WE

∣∣∣∣
τre f

, (39)

where ∆V is an equilibrium change in freshwater vol-
ume corresponding to an increase of Ekman transport by
∆WE . This time scale represents the gyre stability to small
perturbations around its equilibrium state. It is slightly
smaller than the 3 year non-linear adjustment time scale
that was diagnosed from the spin-up time series (Fig. 4).

8. Predicting FWC using the Gyre Index

Here, we propose a novel FWC tendency diagnostic –
the Gyre Index – that predicts the freshwater content and
includes both the effects of wind forcing and eddies.

a. The Gyre Index

We take (22) for the halocline perturbation and integrate
it over the surface area of the gyre to obtain an evolution
equation for the changes in the volume of water above the
halocline:

dV
dt

=
∫ R

0
2πr

dh
dt

dr = 2πR
(

nKos+
−τ

ρ0 f

)∣∣∣∣
r=R

, (40)

where the halocline slope s and surface stress τ are per-
turbations from the mean state. Here we made use of the
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Stokes theorem for the Ekman pumping term and integra-
tion by parts for the eddy diffusion term.

Taking into account that the top-to-bottom salinity dif-
ference is constant throughout our simulations, we can de-
fine the Gyre Index (GI) that closely approximates FWC
tendency as:

GI = 2πR
∆S
Sre f

[
nK0(R)s(R)︸ ︷︷ ︸

Eddy
transport

+
−τ(R)

ρ0 f

]
︸ ︷︷ ︸

Ekman
transport

, (41)

where we have made use of Eq. 31 (s and τ are perturba-
tions from their mean values, while K0 is the eddy diffu-
sivity of the mean state). The GI approach is analogous to
conventional freshwater budget calculations with an addi-
tional eddy transport term. Thus, GI > 0 implies that the
gyre is gaining FWC and GI < 0 implies the gyre is losing
FWC. The magnitude of the GI should be compared to the
maximum FWC flux out of the gyre FWC/T0 ∼ τ/(ρ0 f )
that is proportional to the Ekman transport and is indepen-
dent of the eddy diffusivity (see Eqns. 21 and 20). We
can also interpret the GI as being a measure of how far
the gyre is from its equilibrium state. In equilibrium the

eddy and Ekman transports are compensated resulting in
GI = 0, the limit of a vanishing residual circulation.

Because both terms in the GI are evaluated at the gyre
boundary (Eq. 41), the FWC tendency depends explic-
itly only on the boundary processes. On one hand, the
mesoscale eddies can only redistribute the halocline thick-
ness within the gyre without affecting the total FWC un-
less there are eddy thickness sources at the boundaries. On
the other hand, due to Stokes theorem, the area-integrated
Ekman pumping is proportional to the contour integral
of surface stress around the gyre boundaries. Thus, any
spatially-localized anomaly in Ekman pumping can only
affect the halocline depth locally and changes in FWC
would depend only on the existence of a surface stress
along the boundaries.

b. Diagnostic power of the Gyre Index

We now proceed to investigate the extent to which the
GI can approximate FWC tendency within the eddy re-
solving numerical model. We simulate the gyre variability
by applying time-dependent spatially-homogeneous Ek-
man pumping. Its amplitude evolves according to a red
noise process with a memory parameter of 1 year to mimic
observations that show enhanced variability on interannual
to decadal time scales (Proshutinsky et al 2009); time se-
ries are shown in Fig. 8a. The surface stress perturbations
from the reference run have a variance of 25% with respect
to the mean value of τ0 = 0.015 N m−2 (the reference case
that we use for the Beaufort Gyre). The corresponding
FWC undergoes significant variations of about 3000 km3

on decadal time scales (Fig. 8a, red curve).
We then compute the Gyre Index by diagnosing the

azimuthally-averaged halocline slope perturbation s(t,R)
and the generated surface stress τ(t,R) at the gyre bound-
ary (Eq. 41). Because we use stochastic in time Ekman
pumping perturbations the time series have large variances
at short time scales (Fig. 8a). To illustrate its differences
with the purely Ekman pumping-based index we evaluate
the performance of the Gyre Index on various time scales.
In Figure 8b we compare FWC tendency and the GI for
which a 5-year running mean smoothing has been applied
in order to explore the interannual trends characteristic
of the Beaufort High variability. Using only the Ekman
pumping as an index (i.e. excluding the eddy transport
term in the GI) does not give an accurate representation
of FWC tendency (note the large differences between red
and black curves in Fig 8b). In contrast, the GI provides
a much better agreement with the numerically-simulated
FWC evolution (Fig 8b), further supporting our theory of
the gyre variability.

We quantify the performance of the GI by calculating
the root mean square error as a function of the length of
the running mean window used to smooth the time series
(Fig 8c). We see that the Ekman only predictor of FWC
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tendency provides a good match only on short time scales
where eddy activity is less important. However, on in-
terannual and longer time scales it is necessary to account
for the eddy activity as the Ekman predictor error becomes
larger than the standard deviation of FWC tendency. This
implies that at interannual and longer time scales assum-
ing no change in FWC gives a better prediction than only
taking into account the Ekman pumping. In contrast, the
GI has a strong predictive capability on all time scales with
its error persistently smaller than the standard deviation of
the FWC tendency (Fig 8c).

A calculation of GI requires the background eddy dif-
fusivity evaluated at the boundary (Eq. 41). We show that
there exists an optimal eddy diffusivity that minimizes er-
ror of the GI making it a factor of 2 smaller than that of
the Ekman index alone (see Fig 8d). The optimal value of
K0 ≈ 300 m2 s−1 is in a range of values diagnosed earlier
using the three other independent methods (see Fig. 3b).

In Section 7.1 we demonstrated that only large scale
variations in Ekman pumping significantly affect FWC.
Yet the GI, which accurately predicts variability of FWC,
does not contain information about the horizontal scale
of the Ekman pumping. Instead, it only uses the Ek-
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man transport, which is the area integrated Ekman pump-
ing. This implies that for highly inhomogeneous Ekman
pumping (higher eigenmodes) the GI ≈ 0 and hence there
should be a strong compensation between the eddy trans-
port at the boundary and the Ekman transport.

9. Summary and discussions

We explored the transient dynamics of an idealized
Beaufort Gyre in an eddy resolving general circulation
model with particular emphasis on the FWC variability.
We performed a series of experiments exploring the gyre’s
response to a time-dependent surface stress. The results
were interpreted using Transformed Eulerian Mean theory
that explicitly includes the effects of mesoscale eddies.
Using an eddy parameterization, we provide theoretical
predictions for the gyre’s stability (inverse of the equili-
bration time) as well as transient solutions for halocline
and FWC evolution under time-dependent Ekman pump-
ing.

Our model and theory neglect several processes that
may be important in the real Beaufort Gyre. The theory
is adiabatic and the model was run with a vertical diffu-
sion coefficient of 10−5 m2 s−1. Observations indicate
that diapycnal mixing is spatially and temporally inhomo-
geneous but, on average, between 10−6 and 10−5 m2 s−1

(Guthrie et al 2013). Scaling theory in MS16 suggests that
the impact of diapcynal mixing is small but not negligible,
especially when the surface stress is weak. We also ne-
glect eddy salt fluxes (or thickness fluxes) that originate
from eddies shed from the boundary currents that encircle
the Arctic basin (e.g. Manley and Hunkins (1985); Spall
et al. (2008); Watanabe (2013)). Scaling in Spall (2013)
suggests that the freshwater flux carried by these eddies is
of similar amplitude as that carried by the Ekman trans-
port. It is important to note, however, that the Eulerian
streamfunction associated with the eddies vanishes so they
do not provide an equivalent to the Eulerian Ekman pump-
ing velocity produced by the surface stress. We also do
not represent geometric complexities such as the Eurasian
Basin, continental slopes, shelf dynamics, and mid-ocean
ridges. We view the present model as representing, in a
compact and transparent way, the leading order dynami-
cal balances for the Beaufort Gyre from which additional
processes may be considered.

We now highlight four key results from this study. First,
we demonstrated that the presence of mesoscale eddies di-
rectly affects the Ekman-driven gyre variability (Eqns. 33
and 37). By defining the gyre equilibration time scale (Eq.
28), we provided a theoretical expression for the time scale
and emphasize its explicit dependence on mesoscale eddy
diffusivity (Eq. 28).

Second, we presented several estimates of the charac-
teristic mesoscale eddy diffusivity for the gyre, demon-
strating that it grows nearly linearly with the surface stress

forcing (Fig. 3). Our theory has only one a priori un-
known parameter, the mesoscale eddy diffusivity, which
we inferred in four ways based on: the buoyancy flux (Eq.
14); the bulk halocline deepening (Eq. 15); the adjustment
time scale (Eq. 29); and volume transport variability (Fig.
8d). These independent methods are consistent between
each other and thus provide support for the theory. For
conditions akin to a present-day Beaufort Gyre we pro-
vide an estimate of the characteristic diffusivity of about
300 m2 s−1 (τ̂ = 0.015 N m−2) and predict its sensitivity to
be 170 m2 s−1 per 0.01 N m−2 increase in the azimuthal
surface wind stress. These parameters should be tested
against observations.

Third, motivated by a strong variability in atmospheric
winds over the Beaufort Gyre, we explored a gyre re-
sponse to spatially-inhomogeneous and time-dependent
Ekman pumping. Our analytical and numerical solu-
tions show that amongst all possible stress distributions
that have the same area averaged Ekman pumping, the
FWC is largely affected only by the gyre-scale Ekman
pumping (Fig. 6b). The FWC response to temporally-
periodic Ekman pumping is closely approximated by a
simple damped-driven dynamical system that approaches
equilibrium with a known adjustment time scale controlled
by eddy dynamics (Eq. 28). High-frequency oscillations
in the pumping (e.g. seasonal cycle) have little effect on
halocline depth, whereas the strongest effect is achieved
for low-frequency forcing (e.g. on decadal time scales)
(Fig. 7).

Fourth, we proposed the use of the Gyre Index (Eq. 41)
for monitoring/interpreting FWC tendency in the Beaufort
Gyre. Its key advantage is that calculating the GI requires
knowledge of the halocline slope and magnitude of sur-
face stress evaluated only at the gyre boundaries (not in its
interior). Using a numerical model we demonstrated its
strong predictive capability that is due to the fact that it in-
corporates the competing effects of both Ekman pumping
and mesoscale eddy transport. For interannual and longer
time scales the GI is far superior to using only the strength
of Ekman pumping in evaluating the FWC tendency (Fig.
8).

The GI can be readily generalized to include effects of
more realistic features of the Beaufort Gyre dynamics such
as the azimuthal asymmetry in Ekman pumping and eddy
diffusivities. This would require calculating a contour in-
tegral along the gyre boundaries in order to evaluate terms
in the GI. Observationally, calculation of the GI could be
achieved through a network of instruments located along
the gyre perimeter, thus complementing the observational
efforts in the interior of the gyre. We envision the GI cal-
culation requiring observations of density and velocities
from a set of moorings spaced around the gyre. Mooring
observations of ocean velocity and density fields would
allow for calculation of the eddy fluxes by estimating the
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vertical shear of the first baroclinic mode of the horizon-
tal velocity that is directly related to horizontal halocline
slope. We speculate that the GI would be a useful tool
for interpreting the component of FWC variability that is
related to changes in the halocline depth in both observa-
tional and modeling studies of the Beaufort Gyre.
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APPENDIX A

Time evolution of halocline depth perturbations

The nonlinear equation set 16-17 for the buoyancy evo-
lution can be linearized in the vicinity of its mean state to
obtain :

bt +
1
r
(ψ̃r)rb0z− ψ̃zb0r = 0, (A1)

ψ̃ =
τ

ρ0 f
−n

τ0

ρ0 f
s
s0

, (A2)

s
s0

=
(

br

b0r
− bz

b0z

)
, (A3)

where all dynamical variables are perturbations from their
mean state while 0-subscripts correspond to mean state
variables. The fixed-buoyancy boundary conditions trans-
form into homogeneous conditions for the perturbation
variables (b = 0 at r = R and br=0 at r = 0).

The linearized equation set simplifies dramatically if
one writes it along the characteristics defined by the halo-
cline depth of the mean buoyancy distribution. Eq. 11
may be written in characteristic coordinates [r(l),z(l)] as
bl = brrl + bzzl = 0, where the homogeneous right hand
side indicates that buoyancy is conserved along the char-
acteristic trajectory. The characteristic velocities are then

dz
dl

=−
(
−τ

ρ0 f k

) 1
n

,
dr
dl

= 1. (A4)

The mean vertical buoyancy gradient, following the
isopycnals (characteristics) defined by the mean state,

does not change (b0z = const) and can thus define a per-
turbation isopycnal displacement h as

h(l, t) =
b(l, t)

b0z
. (A5)

Taking into account that ∂l() = ∂r()rl + ∂z()zl we obtain
the following system for variables following characteris-
tics:

ht =−1
l
(ψ̃l)l , ψ̃ =

τ

ρ0 f
−nK0hl , (A6)

where K0(l) is a background eddy diffusivity set by the
isopycnal slope of the steady state buoyancy distribution:

K0 = ksn−1
0 = k

[
−τ0(l)
ρ0 f k

] n−1
n

. (A7)

Eliminating ψ̃ from the equations above we obtain an
equation for the time evolution of isopycnal displacement:

ht =
1
r

(
nK0rhr

)
r
+

1
r

(
r
−τ

ρ0 f

)
r

(A8)

b.c. : h|r=R = 0, hr|r=0 = 0. (A9)

that is now written in terms of the radial coordinate taking
onto account that rl = 1. The fixed-buoyancy boundary
conditions for the original equations translated into the ho-
mogeneous boundary conditions for the linearized system.
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